Metamath Proof Explorer


Theorem simpcntrab

Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024)

Ref Expression
Hypotheses simpcntrab.a
|- B = ( Base ` G )
simpcntrab.b
|- .0. = ( 0g ` G )
simpcntrab.c
|- Z = ( Cntr ` G )
simpcntrab.d
|- ( ph -> G e. SimpGrp )
Assertion simpcntrab
|- ( ph -> ( Z = { .0. } \/ G e. Abel ) )

Proof

Step Hyp Ref Expression
1 simpcntrab.a
 |-  B = ( Base ` G )
2 simpcntrab.b
 |-  .0. = ( 0g ` G )
3 simpcntrab.c
 |-  Z = ( Cntr ` G )
4 simpcntrab.d
 |-  ( ph -> G e. SimpGrp )
5 4 simpggrpd
 |-  ( ph -> G e. Grp )
6 3 cntrnsg
 |-  ( G e. Grp -> Z e. ( NrmSGrp ` G ) )
7 5 6 syl
 |-  ( ph -> Z e. ( NrmSGrp ` G ) )
8 1 2 4 7 simpgnsgeqd
 |-  ( ph -> ( Z = { .0. } \/ Z = B ) )
9 8 ancli
 |-  ( ph -> ( ph /\ ( Z = { .0. } \/ Z = B ) ) )
10 andi
 |-  ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) <-> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) )
11 10 biimpi
 |-  ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) -> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) )
12 simpr
 |-  ( ( ph /\ Z = { .0. } ) -> Z = { .0. } )
13 12 orim1i
 |-  ( ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ ( ph /\ Z = B ) ) )
14 9 11 13 3syl
 |-  ( ph -> ( Z = { .0. } \/ ( ph /\ Z = B ) ) )
15 oveq2
 |-  ( Z = B -> ( G |`s Z ) = ( G |`s B ) )
16 3 oveq2i
 |-  ( G |`s Z ) = ( G |`s ( Cntr ` G ) )
17 15 16 eqtr3di
 |-  ( Z = B -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) )
18 17 adantl
 |-  ( ( ph /\ Z = B ) -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) )
19 1 ressid
 |-  ( G e. Grp -> ( G |`s B ) = G )
20 5 19 syl
 |-  ( ph -> ( G |`s B ) = G )
21 20 adantr
 |-  ( ( ph /\ Z = B ) -> ( G |`s B ) = G )
22 18 21 eqtr3d
 |-  ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) = G )
23 eqid
 |-  ( G |`s ( Cntr ` G ) ) = ( G |`s ( Cntr ` G ) )
24 23 cntrabl
 |-  ( G e. Grp -> ( G |`s ( Cntr ` G ) ) e. Abel )
25 5 24 syl
 |-  ( ph -> ( G |`s ( Cntr ` G ) ) e. Abel )
26 25 adantr
 |-  ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) e. Abel )
27 22 26 eqeltrrd
 |-  ( ( ph /\ Z = B ) -> G e. Abel )
28 27 orim2i
 |-  ( ( Z = { .0. } \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ G e. Abel ) )
29 14 28 syl
 |-  ( ph -> ( Z = { .0. } \/ G e. Abel ) )