| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpcntrab.a |  |-  B = ( Base ` G ) | 
						
							| 2 |  | simpcntrab.b |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | simpcntrab.c |  |-  Z = ( Cntr ` G ) | 
						
							| 4 |  | simpcntrab.d |  |-  ( ph -> G e. SimpGrp ) | 
						
							| 5 | 4 | simpggrpd |  |-  ( ph -> G e. Grp ) | 
						
							| 6 | 3 | cntrnsg |  |-  ( G e. Grp -> Z e. ( NrmSGrp ` G ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> Z e. ( NrmSGrp ` G ) ) | 
						
							| 8 | 1 2 4 7 | simpgnsgeqd |  |-  ( ph -> ( Z = { .0. } \/ Z = B ) ) | 
						
							| 9 | 8 | ancli |  |-  ( ph -> ( ph /\ ( Z = { .0. } \/ Z = B ) ) ) | 
						
							| 10 |  | andi |  |-  ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) <-> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) ) | 
						
							| 11 | 10 | biimpi |  |-  ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) -> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ Z = { .0. } ) -> Z = { .0. } ) | 
						
							| 13 | 12 | orim1i |  |-  ( ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ ( ph /\ Z = B ) ) ) | 
						
							| 14 |  | oveq2 |  |-  ( Z = B -> ( G |`s Z ) = ( G |`s B ) ) | 
						
							| 15 | 3 | oveq2i |  |-  ( G |`s Z ) = ( G |`s ( Cntr ` G ) ) | 
						
							| 16 | 14 15 | eqtr3di |  |-  ( Z = B -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ Z = B ) -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) ) | 
						
							| 18 | 1 | ressid |  |-  ( G e. Grp -> ( G |`s B ) = G ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> ( G |`s B ) = G ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ Z = B ) -> ( G |`s B ) = G ) | 
						
							| 21 | 17 20 | eqtr3d |  |-  ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) = G ) | 
						
							| 22 |  | eqid |  |-  ( G |`s ( Cntr ` G ) ) = ( G |`s ( Cntr ` G ) ) | 
						
							| 23 | 22 | cntrabl |  |-  ( G e. Grp -> ( G |`s ( Cntr ` G ) ) e. Abel ) | 
						
							| 24 | 5 23 | syl |  |-  ( ph -> ( G |`s ( Cntr ` G ) ) e. Abel ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) e. Abel ) | 
						
							| 26 | 21 25 | eqeltrrd |  |-  ( ( ph /\ Z = B ) -> G e. Abel ) | 
						
							| 27 | 26 | orim2i |  |-  ( ( Z = { .0. } \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ G e. Abel ) ) | 
						
							| 28 | 9 11 13 27 | 4syl |  |-  ( ph -> ( Z = { .0. } \/ G e. Abel ) ) |