Step |
Hyp |
Ref |
Expression |
1 |
|
simpcntrab.a |
|- B = ( Base ` G ) |
2 |
|
simpcntrab.b |
|- .0. = ( 0g ` G ) |
3 |
|
simpcntrab.c |
|- Z = ( Cntr ` G ) |
4 |
|
simpcntrab.d |
|- ( ph -> G e. SimpGrp ) |
5 |
4
|
simpggrpd |
|- ( ph -> G e. Grp ) |
6 |
3
|
cntrnsg |
|- ( G e. Grp -> Z e. ( NrmSGrp ` G ) ) |
7 |
5 6
|
syl |
|- ( ph -> Z e. ( NrmSGrp ` G ) ) |
8 |
1 2 4 7
|
simpgnsgeqd |
|- ( ph -> ( Z = { .0. } \/ Z = B ) ) |
9 |
8
|
ancli |
|- ( ph -> ( ph /\ ( Z = { .0. } \/ Z = B ) ) ) |
10 |
|
andi |
|- ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) <-> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) ) |
11 |
10
|
biimpi |
|- ( ( ph /\ ( Z = { .0. } \/ Z = B ) ) -> ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) ) |
12 |
|
simpr |
|- ( ( ph /\ Z = { .0. } ) -> Z = { .0. } ) |
13 |
12
|
orim1i |
|- ( ( ( ph /\ Z = { .0. } ) \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ ( ph /\ Z = B ) ) ) |
14 |
9 11 13
|
3syl |
|- ( ph -> ( Z = { .0. } \/ ( ph /\ Z = B ) ) ) |
15 |
|
oveq2 |
|- ( Z = B -> ( G |`s Z ) = ( G |`s B ) ) |
16 |
3
|
oveq2i |
|- ( G |`s Z ) = ( G |`s ( Cntr ` G ) ) |
17 |
15 16
|
eqtr3di |
|- ( Z = B -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ Z = B ) -> ( G |`s B ) = ( G |`s ( Cntr ` G ) ) ) |
19 |
1
|
ressid |
|- ( G e. Grp -> ( G |`s B ) = G ) |
20 |
5 19
|
syl |
|- ( ph -> ( G |`s B ) = G ) |
21 |
20
|
adantr |
|- ( ( ph /\ Z = B ) -> ( G |`s B ) = G ) |
22 |
18 21
|
eqtr3d |
|- ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) = G ) |
23 |
|
eqid |
|- ( G |`s ( Cntr ` G ) ) = ( G |`s ( Cntr ` G ) ) |
24 |
23
|
cntrabl |
|- ( G e. Grp -> ( G |`s ( Cntr ` G ) ) e. Abel ) |
25 |
5 24
|
syl |
|- ( ph -> ( G |`s ( Cntr ` G ) ) e. Abel ) |
26 |
25
|
adantr |
|- ( ( ph /\ Z = B ) -> ( G |`s ( Cntr ` G ) ) e. Abel ) |
27 |
22 26
|
eqeltrrd |
|- ( ( ph /\ Z = B ) -> G e. Abel ) |
28 |
27
|
orim2i |
|- ( ( Z = { .0. } \/ ( ph /\ Z = B ) ) -> ( Z = { .0. } \/ G e. Abel ) ) |
29 |
14 28
|
syl |
|- ( ph -> ( Z = { .0. } \/ G e. Abel ) ) |