| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sin |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | subcn |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 |  | efcn |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | ax-icn |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | mulc1cncf |  | 
						
							| 10 | 7 9 | mp1i |  | 
						
							| 11 | 6 10 | cncfmpt1f |  | 
						
							| 12 |  | negicn |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | mulc1cncf |  | 
						
							| 15 | 12 14 | mp1i |  | 
						
							| 16 | 6 15 | cncfmpt1f |  | 
						
							| 17 | 2 4 11 16 | cncfmpt2f |  | 
						
							| 18 |  | cncff |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 | fmpt |  | 
						
							| 22 | 19 21 | sylibr |  | 
						
							| 23 |  | eqidd |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 |  | oveq1 |  | 
						
							| 26 | 22 23 24 25 | fmptcof |  | 
						
							| 27 |  | 2mulicn |  | 
						
							| 28 |  | 2muline0 |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 | divccncf |  | 
						
							| 31 | 27 28 30 | mp2an |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 17 32 | cncfco |  | 
						
							| 34 | 26 33 | eqeltrrd |  | 
						
							| 35 | 34 | mptru |  | 
						
							| 36 | 1 35 | eqeltri |  |