Metamath Proof Explorer


Theorem sincosq1eq

Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008)

Ref Expression
Assertion sincosq1eq ABA+B=1sinAπ2=cosBπ2

Proof

Step Hyp Ref Expression
1 picn π
2 2cn 2
3 2ne0 20
4 1 2 3 divcli π2
5 mulcl Aπ2Aπ2
6 4 5 mpan2 AAπ2
7 coshalfpim Aπ2cosπ2Aπ2=sinAπ2
8 6 7 syl Acosπ2Aπ2=sinAπ2
9 8 3ad2ant1 ABA+B=1cosπ2Aπ2=sinAπ2
10 adddir ABπ2A+Bπ2=Aπ2+Bπ2
11 4 10 mp3an3 ABA+Bπ2=Aπ2+Bπ2
12 11 3adant3 ABA+B=1A+Bπ2=Aπ2+Bπ2
13 oveq1 A+B=1A+Bπ2=1π2
14 4 mullidi 1π2=π2
15 13 14 eqtrdi A+B=1A+Bπ2=π2
16 15 3ad2ant3 ABA+B=1A+Bπ2=π2
17 12 16 eqtr3d ABA+B=1Aπ2+Bπ2=π2
18 mulcl Bπ2Bπ2
19 4 18 mpan2 BBπ2
20 subadd π2Aπ2Bπ2π2Aπ2=Bπ2Aπ2+Bπ2=π2
21 4 6 19 20 mp3an3an ABπ2Aπ2=Bπ2Aπ2+Bπ2=π2
22 21 3adant3 ABA+B=1π2Aπ2=Bπ2Aπ2+Bπ2=π2
23 17 22 mpbird ABA+B=1π2Aπ2=Bπ2
24 23 fveq2d ABA+B=1cosπ2Aπ2=cosBπ2
25 9 24 eqtr3d ABA+B=1sinAπ2=cosBπ2