Metamath Proof Explorer


Theorem sincosq1sgn

Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq1sgn A0π20<sinA0<cosA

Proof

Step Hyp Ref Expression
1 0xr 0*
2 halfpire π2
3 2 rexri π2*
4 elioo2 0*π2*A0π2A0<AA<π2
5 1 3 4 mp2an A0π2A0<AA<π2
6 sincosq1lem A0<AA<π20<sinA
7 resubcl π2Aπ2A
8 2 7 mpan Aπ2A
9 sincosq1lem π2A0<π2Aπ2A<π20<sinπ2A
10 8 9 syl3an1 A0<π2Aπ2A<π20<sinπ2A
11 10 3expib A0<π2Aπ2A<π20<sinπ2A
12 0re 0
13 ltsub13 0π2A0<π2AA<π20
14 12 2 13 mp3an12 A0<π2AA<π20
15 2 recni π2
16 15 subid1i π20=π2
17 16 breq2i A<π20A<π2
18 14 17 bitrdi A0<π2AA<π2
19 ltsub23 π2Aπ2π2A<π2π2π2<A
20 2 2 19 mp3an13 Aπ2A<π2π2π2<A
21 15 subidi π2π2=0
22 21 breq1i π2π2<A0<A
23 20 22 bitrdi Aπ2A<π20<A
24 18 23 anbi12d A0<π2Aπ2A<π2A<π20<A
25 24 biancomd A0<π2Aπ2A<π20<AA<π2
26 recn AA
27 sinhalfpim Asinπ2A=cosA
28 26 27 syl Asinπ2A=cosA
29 28 breq2d A0<sinπ2A0<cosA
30 11 25 29 3imtr3d A0<AA<π20<cosA
31 30 3impib A0<AA<π20<cosA
32 6 31 jca A0<AA<π20<sinA0<cosA
33 5 32 sylbi A0π20<sinA0<cosA