Metamath Proof Explorer


Theorem slenlt

Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion slenlt A No B No A s B ¬ B < s A

Proof

Step Hyp Ref Expression
1 df-sle s = No × No < s -1
2 1 breqi A s B A No × No < s -1 B
3 brdif A No × No < s -1 B A No × No B ¬ A < s -1 B
4 brxp A No × No B A No B No
5 4 anbi1i A No × No B ¬ A < s -1 B A No B No ¬ A < s -1 B
6 2 3 5 3bitri A s B A No B No ¬ A < s -1 B
7 ibar A No B No ¬ A < s -1 B A No B No ¬ A < s -1 B
8 brcnvg A No B No A < s -1 B B < s A
9 8 notbid A No B No ¬ A < s -1 B ¬ B < s A
10 7 9 bitr3d A No B No A No B No ¬ A < s -1 B ¬ B < s A
11 6 10 syl5bb A No B No A s B ¬ B < s A