Metamath Proof Explorer


Theorem sltirr

Description: Surreal less than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion sltirr A No ¬ A < s A

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 sonr < s Or No A No ¬ A < s A
3 1 2 mpan A No ¬ A < s A