Metamath Proof Explorer


Theorem sltsubaddd

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1 φANo
sltsubadd.2 φBNo
sltsubadd.3 φCNo
Assertion sltsubaddd Could not format assertion : No typesetting found for |- ( ph -> ( ( A -s B ) A

Proof

Step Hyp Ref Expression
1 sltsubadd.1 φANo
2 sltsubadd.2 φBNo
3 sltsubadd.3 φCNo
4 1 2 subscld Could not format ( ph -> ( A -s B ) e. No ) : No typesetting found for |- ( ph -> ( A -s B ) e. No ) with typecode |-
5 4 3 2 sltadd1d Could not format ( ph -> ( ( A -s B ) ( ( A -s B ) +s B ) ( ( A -s B ) ( ( A -s B ) +s B )
6 npcans Could not format ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) with typecode |-
7 1 2 6 syl2anc Could not format ( ph -> ( ( A -s B ) +s B ) = A ) : No typesetting found for |- ( ph -> ( ( A -s B ) +s B ) = A ) with typecode |-
8 7 breq1d Could not format ( ph -> ( ( ( A -s B ) +s B ) A ( ( ( A -s B ) +s B ) A
9 5 8 bitrd Could not format ( ph -> ( ( A -s B ) A ( ( A -s B ) A