Metamath Proof Explorer


Theorem smndex1mndlem

Description: Lemma for smndex1mnd and smndex1id . (Contributed by AV, 16-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
smndex1mgm.s S=M𝑠B
Assertion smndex1mndlem XBIX=XXI=X

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 smndex1mgm.s S=M𝑠B
7 elun XIn0..^NGnXIXn0..^NGn
8 elsni XIX=I
9 1 2 3 smndex1iidm II=I
10 coeq2 X=IIX=II
11 id X=IX=I
12 9 10 11 3eqtr4a X=IIX=X
13 coeq1 X=IXI=II
14 9 13 11 3eqtr4a X=IXI=X
15 12 14 jca X=IIX=XXI=X
16 8 15 syl XIIX=XXI=X
17 eliun Xn0..^NGnn0..^NXGn
18 fveq2 n=kGn=Gk
19 18 sneqd n=kGn=Gk
20 19 eleq2d n=kXGnXGk
21 20 cbvrexvw n0..^NXGnk0..^NXGk
22 elsni XGkX=Gk
23 1 2 3 4 smndex1igid k0..^NIGk=Gk
24 1 2 3 smndex1ibas IBaseM
25 1 2 3 4 smndex1gid IBaseMk0..^NGkI=Gk
26 24 25 mpan k0..^NGkI=Gk
27 23 26 jca k0..^NIGk=GkGkI=Gk
28 coeq2 X=GkIX=IGk
29 id X=GkX=Gk
30 28 29 eqeq12d X=GkIX=XIGk=Gk
31 coeq1 X=GkXI=GkI
32 31 29 eqeq12d X=GkXI=XGkI=Gk
33 30 32 anbi12d X=GkIX=XXI=XIGk=GkGkI=Gk
34 27 33 imbitrrid X=Gkk0..^NIX=XXI=X
35 22 34 syl XGkk0..^NIX=XXI=X
36 35 impcom k0..^NXGkIX=XXI=X
37 36 rexlimiva k0..^NXGkIX=XXI=X
38 21 37 sylbi n0..^NXGnIX=XXI=X
39 17 38 sylbi Xn0..^NGnIX=XXI=X
40 16 39 jaoi XIXn0..^NGnIX=XXI=X
41 7 40 sylbi XIn0..^NGnIX=XXI=X
42 41 5 eleq2s XBIX=XXI=X