Metamath Proof Explorer


Theorem smndex2dlinvh

Description: The halving functions H are left inverses of the doubling function D . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B=BaseM
smndex2dbas.0 0˙=0M
smndex2dbas.d D=x02x
smndex2hbas.n N0
smndex2hbas.h H=x0if2xx2N
Assertion smndex2dlinvh HD=0˙

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B=BaseM
3 smndex2dbas.0 0˙=0M
4 smndex2dbas.d D=x02x
5 smndex2hbas.n N0
6 smndex2hbas.h H=x0if2xx2N
7 2nn0 20
8 nn0mulcl 20y02y0
9 oveq2 x=y2x=2y
10 9 cbvmptv x02x=y02y
11 4 10 eqtri D=y02y
12 11 a1i 20D=y02y
13 6 a1i 20H=x0if2xx2N
14 breq2 x=2y2x22y
15 oveq1 x=2yx2=2y2
16 14 15 ifbieq1d x=2yif2xx2N=if22y2y2N
17 8 12 13 16 fmptco 20HD=y0if22y2y2N
18 7 17 ax-mp HD=y0if22y2y2N
19 nn0z y0y
20 eqidd y02y=2y
21 2teven y2y=2y22y
22 19 20 21 syl2anc y022y
23 22 iftrued y0if22y2y2N=2y2
24 23 mpteq2ia y0if22y2y2N=y02y2
25 nn0cn y0y
26 2cnd y02
27 2ne0 20
28 27 a1i y020
29 25 26 28 divcan3d y02y2=y
30 29 mpteq2ia y02y2=y0y
31 nn0ex 0V
32 1 efmndid 0VI0=0M
33 31 32 ax-mp I0=0M
34 mptresid I0=y0y
35 3 33 34 3eqtr2ri y0y=0˙
36 30 35 eqtri y02y2=0˙
37 24 36 eqtri y0if22y2y2N=0˙
38 18 37 eqtri HD=0˙