Metamath Proof Explorer


Theorem smoiso2

Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion smoiso2 Ord A B On F : A onto B Smo F F Isom E , E A B

Proof

Step Hyp Ref Expression
1 fof F : A onto B F : A B
2 smo11 F : A B Smo F F : A 1-1 B
3 1 2 sylan F : A onto B Smo F F : A 1-1 B
4 simpl F : A onto B Smo F F : A onto B
5 df-f1o F : A 1-1 onto B F : A 1-1 B F : A onto B
6 3 4 5 sylanbrc F : A onto B Smo F F : A 1-1 onto B
7 6 adantl Ord A B On F : A onto B Smo F F : A 1-1 onto B
8 fofn F : A onto B F Fn A
9 smoord F Fn A Smo F x A y A x y F x F y
10 epel x E y x y
11 fvex F y V
12 11 epeli F x E F y F x F y
13 9 10 12 3bitr4g F Fn A Smo F x A y A x E y F x E F y
14 13 ralrimivva F Fn A Smo F x A y A x E y F x E F y
15 8 14 sylan F : A onto B Smo F x A y A x E y F x E F y
16 15 adantl Ord A B On F : A onto B Smo F x A y A x E y F x E F y
17 df-isom F Isom E , E A B F : A 1-1 onto B x A y A x E y F x E F y
18 7 16 17 sylanbrc Ord A B On F : A onto B Smo F F Isom E , E A B
19 18 ex Ord A B On F : A onto B Smo F F Isom E , E A B
20 isof1o F Isom E , E A B F : A 1-1 onto B
21 f1ofo F : A 1-1 onto B F : A onto B
22 20 21 syl F Isom E , E A B F : A onto B
23 22 3ad2ant1 F Isom E , E A B Ord A B On F : A onto B
24 smoiso F Isom E , E A B Ord A B On Smo F
25 23 24 jca F Isom E , E A B Ord A B On F : A onto B Smo F
26 25 3expib F Isom E , E A B Ord A B On F : A onto B Smo F
27 26 com12 Ord A B On F Isom E , E A B F : A onto B Smo F
28 19 27 impbid Ord A B On F : A onto B Smo F F Isom E , E A B