Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | smoiso2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof | |
|
2 | smo11 | |
|
3 | 1 2 | sylan | |
4 | simpl | |
|
5 | df-f1o | |
|
6 | 3 4 5 | sylanbrc | |
7 | 6 | adantl | |
8 | fofn | |
|
9 | smoord | |
|
10 | epel | |
|
11 | fvex | |
|
12 | 11 | epeli | |
13 | 9 10 12 | 3bitr4g | |
14 | 13 | ralrimivva | |
15 | 8 14 | sylan | |
16 | 15 | adantl | |
17 | df-isom | |
|
18 | 7 16 17 | sylanbrc | |
19 | 18 | ex | |
20 | isof1o | |
|
21 | f1ofo | |
|
22 | 20 21 | syl | |
23 | 22 | 3ad2ant1 | |
24 | smoiso | |
|
25 | 23 24 | jca | |
26 | 25 | 3expib | |
27 | 26 | com12 | |
28 | 19 27 | impbid | |