Metamath Proof Explorer


Theorem smoiso2

Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion smoiso2 OrdABOnF:AontoBSmoFFIsomE,EAB

Proof

Step Hyp Ref Expression
1 fof F:AontoBF:AB
2 smo11 F:ABSmoFF:A1-1B
3 1 2 sylan F:AontoBSmoFF:A1-1B
4 simpl F:AontoBSmoFF:AontoB
5 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
6 3 4 5 sylanbrc F:AontoBSmoFF:A1-1 ontoB
7 6 adantl OrdABOnF:AontoBSmoFF:A1-1 ontoB
8 fofn F:AontoBFFnA
9 smoord FFnASmoFxAyAxyFxFy
10 epel xEyxy
11 fvex FyV
12 11 epeli FxEFyFxFy
13 9 10 12 3bitr4g FFnASmoFxAyAxEyFxEFy
14 13 ralrimivva FFnASmoFxAyAxEyFxEFy
15 8 14 sylan F:AontoBSmoFxAyAxEyFxEFy
16 15 adantl OrdABOnF:AontoBSmoFxAyAxEyFxEFy
17 df-isom FIsomE,EABF:A1-1 ontoBxAyAxEyFxEFy
18 7 16 17 sylanbrc OrdABOnF:AontoBSmoFFIsomE,EAB
19 18 ex OrdABOnF:AontoBSmoFFIsomE,EAB
20 isof1o FIsomE,EABF:A1-1 ontoB
21 f1ofo F:A1-1 ontoBF:AontoB
22 20 21 syl FIsomE,EABF:AontoB
23 22 3ad2ant1 FIsomE,EABOrdABOnF:AontoB
24 smoiso FIsomE,EABOrdABOnSmoF
25 23 24 jca FIsomE,EABOrdABOnF:AontoBSmoF
26 25 3expib FIsomE,EABOrdABOnF:AontoBSmoF
27 26 com12 OrdABOnFIsomE,EABF:AontoBSmoF
28 19 27 impbid OrdABOnF:AontoBSmoFFIsomE,EAB