Metamath Proof Explorer


Theorem smueq

Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016)

Ref Expression
Hypotheses smueq.a φA0
smueq.b φB0
smueq.n φN0
Assertion smueq φAsmulB0..^N=A0..^NsmulB0..^N0..^N

Proof

Step Hyp Ref Expression
1 smueq.a φA0
2 smueq.b φB0
3 smueq.n φN0
4 eqid seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
5 eqid seq0p𝒫0,m0psaddn0|mAnmB0..^Nn0ifn=0n1=seq0p𝒫0,m0psaddn0|mAnmB0..^Nn0ifn=0n1
6 1 2 3 4 5 smueqlem φAsmulB0..^N=A0..^NsmulB0..^N0..^N