Metamath Proof Explorer


Theorem sn-0ne2

Description: 0ne2 without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion sn-0ne2 02

Proof

Step Hyp Ref Expression
1 1re 1
2 readdlid 10+1=1
3 1 2 ax-mp 0+1=1
4 sn-1ne2 12
5 2re 2
6 1 5 lttri2i 121<22<1
7 4 6 mpbi 1<22<1
8 1red 1<21
9 1 5 1 ltadd2i 1<21+1<1+2
10 9 biimpi 1<21+1<1+2
11 1p1e2 1+1=2
12 1p2e3 1+2=3
13 10 11 12 3brtr3g 1<22<3
14 3re 3
15 1 5 14 lttri 1<22<31<3
16 13 15 mpdan 1<21<3
17 8 16 ltned 1<213
18 14 a1i 2<13
19 5 1 1 ltadd2i 2<11+2<1+1
20 19 biimpi 2<11+2<1+1
21 20 12 11 3brtr3g 2<13<2
22 14 5 1 lttri 3<22<13<1
23 21 22 mpancom 2<13<1
24 18 23 gtned 2<113
25 17 24 jaoi 1<22<113
26 7 25 ax-mp 13
27 df-3 3=2+1
28 26 27 neeqtri 12+1
29 3 28 eqnetri 0+12+1
30 oveq1 0=20+1=2+1
31 30 necon3i 0+12+102
32 29 31 ax-mp 02