Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Utility theorems
sn-iotanul
Next ⟩
sn-iotassuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-iotanul
Description:
Version of
iotanul
using
df-iota
instead of
dfiota2
.
(Contributed by
SN
, 6-Nov-2024)
Ref
Expression
Assertion
sn-iotanul
⊢
¬
∃
y
x
|
φ
=
y
→
ι
x
|
φ
=
∅
Proof
Step
Hyp
Ref
Expression
1
df-iota
⊢
ι
x
|
φ
=
⋃
w
|
x
|
φ
=
w
2
n0
⊢
⋃
w
|
x
|
φ
=
w
≠
∅
↔
∃
v
v
∈
⋃
w
|
x
|
φ
=
w
3
eluni
⊢
v
∈
⋃
w
|
x
|
φ
=
w
↔
∃
y
v
∈
y
∧
y
∈
w
|
x
|
φ
=
w
4
vex
⊢
y
∈
V
5
sneq
⊢
w
=
y
→
w
=
y
6
5
eqeq2d
⊢
w
=
y
→
x
|
φ
=
w
↔
x
|
φ
=
y
7
4
6
elab
⊢
y
∈
w
|
x
|
φ
=
w
↔
x
|
φ
=
y
8
7
biimpi
⊢
y
∈
w
|
x
|
φ
=
w
→
x
|
φ
=
y
9
8
adantl
⊢
v
∈
y
∧
y
∈
w
|
x
|
φ
=
w
→
x
|
φ
=
y
10
9
eximi
⊢
∃
y
v
∈
y
∧
y
∈
w
|
x
|
φ
=
w
→
∃
y
x
|
φ
=
y
11
3
10
sylbi
⊢
v
∈
⋃
w
|
x
|
φ
=
w
→
∃
y
x
|
φ
=
y
12
11
exlimiv
⊢
∃
v
v
∈
⋃
w
|
x
|
φ
=
w
→
∃
y
x
|
φ
=
y
13
2
12
sylbi
⊢
⋃
w
|
x
|
φ
=
w
≠
∅
→
∃
y
x
|
φ
=
y
14
13
necon1bi
⊢
¬
∃
y
x
|
φ
=
y
→
⋃
w
|
x
|
φ
=
w
=
∅
15
1
14
syl5eq
⊢
¬
∃
y
x
|
φ
=
y
→
ι
x
|
φ
=
∅