Metamath Proof Explorer


Theorem sn-mul01

Description: mul01 without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-mul01 AA0=0

Proof

Step Hyp Ref Expression
1 id AA
2 0cnd A0
3 1 2 mulcld AA0
4 1 2 2 adddid AA0+0=A0+A0
5 sn-00id 0+0=0
6 5 oveq2i A0+0=A0
7 4 6 eqtr3di AA0+A0=A0
8 3 7 sn-addid0 AA0=0