Metamath Proof Explorer


Theorem sn-remul0ord

Description: A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025)

Ref Expression
Hypotheses sn-remul0ord.a φ A
sn-remul0ord.b φ B
Assertion sn-remul0ord φ A B = 0 A = 0 B = 0

Proof

Step Hyp Ref Expression
1 sn-remul0ord.a φ A
2 sn-remul0ord.b φ B
3 remul02 B 0 B = 0
4 2 3 syl φ 0 B = 0
5 4 adantr φ B 0 0 B = 0
6 5 eqeq2d φ B 0 A B = 0 B A B = 0
7 1 adantr φ B 0 A
8 0red φ B 0 0
9 2 adantr φ B 0 B
10 simpr φ B 0 B 0
11 7 8 9 10 remulcan2d φ B 0 A B = 0 B A = 0
12 6 11 bitr3d φ B 0 A B = 0 A = 0
13 12 biimpd φ B 0 A B = 0 A = 0
14 13 impancom φ A B = 0 B 0 A = 0
15 14 necon1bd φ A B = 0 ¬ A = 0 B = 0
16 15 orrd φ A B = 0 A = 0 B = 0
17 16 ex φ A B = 0 A = 0 B = 0
18 oveq1 A = 0 A B = 0 B
19 18 eqeq1d A = 0 A B = 0 0 B = 0
20 4 19 syl5ibrcom φ A = 0 A B = 0
21 remul01 A A 0 = 0
22 1 21 syl φ A 0 = 0
23 oveq2 B = 0 A B = A 0
24 23 eqeq1d B = 0 A B = 0 A 0 = 0
25 22 24 syl5ibrcom φ B = 0 A B = 0
26 20 25 jaod φ A = 0 B = 0 A B = 0
27 17 26 impbid φ A B = 0 A = 0 B = 0