Metamath Proof Explorer


Theorem sn-retire

Description: Commuted version of sn-itrere . (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion sn-retire R R i R = 0

Proof

Step Hyp Ref Expression
1 sn-inelr ¬ i
2 simpll R R 0 R i R
3 simplr R R 0 R i R 0
4 2 3 rerecid2 Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. R ) = 1 ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. R ) = 1 ) with typecode |-
5 4 oveq1d Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( ( 1 /R R ) x. R ) x. _i ) = ( 1 x. _i ) ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( ( 1 /R R ) x. R ) x. _i ) = ( 1 x. _i ) ) with typecode |-
6 2 3 sn-rereccld Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( 1 /R R ) e. RR ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( 1 /R R ) e. RR ) with typecode |-
7 6 recnd Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( 1 /R R ) e. CC ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( 1 /R R ) e. CC ) with typecode |-
8 2 recnd R R 0 R i R
9 ax-icn i
10 9 a1i R R 0 R i i
11 7 8 10 mulassd Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( ( 1 /R R ) x. R ) x. _i ) = ( ( 1 /R R ) x. ( R x. _i ) ) ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( ( 1 /R R ) x. R ) x. _i ) = ( ( 1 /R R ) x. ( R x. _i ) ) ) with typecode |-
12 sn-1ticom 1 i = i 1
13 sn-it1ei i 1 = i
14 12 13 eqtri 1 i = i
15 14 a1i R R 0 R i 1 i = i
16 5 11 15 3eqtr3d Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. ( R x. _i ) ) = _i ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. ( R x. _i ) ) = _i ) with typecode |-
17 simpr R R 0 R i R i
18 6 17 remulcld Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. ( R x. _i ) ) e. RR ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( R x. _i ) e. RR ) -> ( ( 1 /R R ) x. ( R x. _i ) ) e. RR ) with typecode |-
19 16 18 eqeltrrd R R 0 R i i
20 19 ex R R 0 R i i
21 1 20 mtoi R R 0 ¬ R i
22 21 ex R R 0 ¬ R i
23 22 necon4ad R R i R = 0
24 oveq1 R = 0 R i = 0 i
25 sn-0tie0 0 i = 0
26 0re 0
27 25 26 eqeltri 0 i
28 24 27 eqeltrdi R = 0 R i
29 23 28 impbid1 R R i R = 0