Metamath Proof Explorer


Theorem sn-itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion sn-itrere R i R R = 0

Proof

Step Hyp Ref Expression
1 sn-inelr ¬ i
2 ax-icn i
3 2 a1i R R 0 i R i
4 simpll R R 0 i R R
5 4 recnd R R 0 i R R
6 simplr R R 0 i R R 0
7 4 6 sn-rereccld Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. RR ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. RR ) with typecode |-
8 7 recnd Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. CC ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. CC ) with typecode |-
9 3 5 8 mulassd Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = ( _i x. ( R x. ( 1 /R R ) ) ) ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = ( _i x. ( R x. ( 1 /R R ) ) ) ) with typecode |-
10 4 6 rerecid Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( R x. ( 1 /R R ) ) = 1 ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( R x. ( 1 /R R ) ) = 1 ) with typecode |-
11 10 oveq2d Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. ( R x. ( 1 /R R ) ) ) = ( _i x. 1 ) ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. ( R x. ( 1 /R R ) ) ) = ( _i x. 1 ) ) with typecode |-
12 sn-it1ei i 1 = i
13 12 a1i R R 0 i R i 1 = i
14 9 11 13 3eqtrd Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = _i ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = _i ) with typecode |-
15 simpr R R 0 i R i R
16 15 7 remulcld Could not format ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) e. RR ) : No typesetting found for |- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) e. RR ) with typecode |-
17 14 16 eqeltrrd R R 0 i R i
18 17 ex R R 0 i R i
19 1 18 mtoi R R 0 ¬ i R
20 19 ex R R 0 ¬ i R
21 20 necon4ad R i R R = 0
22 oveq2 R = 0 i R = i 0
23 sn-it0e0 i 0 = 0
24 0re 0
25 23 24 eqeltri i 0
26 22 25 eqeltrdi R = 0 i R
27 21 26 impbid1 R i R R = 0