| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-rrecex |
|- ( ( R e. RR /\ R =/= 0 ) -> E. x e. RR ( R x. x ) = 1 ) |
| 2 |
|
sn-inelr |
|- -. _i e. RR |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
3
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> _i e. CC ) |
| 5 |
|
simplll |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> R e. RR ) |
| 6 |
5
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> R e. CC ) |
| 7 |
|
simplrl |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> x e. RR ) |
| 8 |
7
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> x e. CC ) |
| 9 |
4 6 8
|
mulassd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) = ( _i x. ( R x. x ) ) ) |
| 10 |
|
simplrr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( R x. x ) = 1 ) |
| 11 |
10
|
oveq2d |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. ( R x. x ) ) = ( _i x. 1 ) ) |
| 12 |
|
sn-it1ei |
|- ( _i x. 1 ) = _i |
| 13 |
12
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. 1 ) = _i ) |
| 14 |
9 11 13
|
3eqtrd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) = _i ) |
| 15 |
|
simpr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. R ) e. RR ) |
| 16 |
15 7
|
remulcld |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) e. RR ) |
| 17 |
14 16
|
eqeltrrd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> _i e. RR ) |
| 18 |
17
|
ex |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> ( ( _i x. R ) e. RR -> _i e. RR ) ) |
| 19 |
2 18
|
mtoi |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> -. ( _i x. R ) e. RR ) |
| 20 |
1 19
|
rexlimddv |
|- ( ( R e. RR /\ R =/= 0 ) -> -. ( _i x. R ) e. RR ) |
| 21 |
20
|
ex |
|- ( R e. RR -> ( R =/= 0 -> -. ( _i x. R ) e. RR ) ) |
| 22 |
21
|
necon4ad |
|- ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) ) |
| 23 |
|
oveq2 |
|- ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) ) |
| 24 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
| 25 |
|
0re |
|- 0 e. RR |
| 26 |
24 25
|
eqeltri |
|- ( _i x. 0 ) e. RR |
| 27 |
23 26
|
eqeltrdi |
|- ( R = 0 -> ( _i x. R ) e. RR ) |
| 28 |
22 27
|
impbid1 |
|- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) ) |