Metamath Proof Explorer


Theorem sn-itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion sn-itrere
|- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) )

Proof

Step Hyp Ref Expression
1 sn-inelr
 |-  -. _i e. RR
2 ax-icn
 |-  _i e. CC
3 2 a1i
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> _i e. CC )
4 simpll
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R e. RR )
5 4 recnd
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R e. CC )
6 simplr
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R =/= 0 )
7 4 6 sn-rereccld
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. RR )
8 7 recnd
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( 1 /R R ) e. CC )
9 3 5 8 mulassd
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = ( _i x. ( R x. ( 1 /R R ) ) ) )
10 4 6 rerecid
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( R x. ( 1 /R R ) ) = 1 )
11 10 oveq2d
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. ( R x. ( 1 /R R ) ) ) = ( _i x. 1 ) )
12 sn-it1ei
 |-  ( _i x. 1 ) = _i
13 12 a1i
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. 1 ) = _i )
14 9 11 13 3eqtrd
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) = _i )
15 simpr
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. R ) e. RR )
16 15 7 remulcld
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. ( 1 /R R ) ) e. RR )
17 14 16 eqeltrrd
 |-  ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> _i e. RR )
18 17 ex
 |-  ( ( R e. RR /\ R =/= 0 ) -> ( ( _i x. R ) e. RR -> _i e. RR ) )
19 1 18 mtoi
 |-  ( ( R e. RR /\ R =/= 0 ) -> -. ( _i x. R ) e. RR )
20 19 ex
 |-  ( R e. RR -> ( R =/= 0 -> -. ( _i x. R ) e. RR ) )
21 20 necon4ad
 |-  ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) )
22 oveq2
 |-  ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) )
23 sn-it0e0
 |-  ( _i x. 0 ) = 0
24 0re
 |-  0 e. RR
25 23 24 eqeltri
 |-  ( _i x. 0 ) e. RR
26 22 25 eqeltrdi
 |-  ( R = 0 -> ( _i x. R ) e. RR )
27 21 26 impbid1
 |-  ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) )