Metamath Proof Explorer


Theorem sn-subcl

Description: subcl without ax-mulcom . (Contributed by SN, 5-May-2024)

Ref Expression
Assertion sn-subcl A B A B

Proof

Step Hyp Ref Expression
1 subval A B A B = ι x | B + x = A
2 sn-subeu B A ∃! x B + x = A
3 2 ancoms A B ∃! x B + x = A
4 riotacl ∃! x B + x = A ι x | B + x = A
5 3 4 syl A B ι x | B + x = A
6 1 5 eqeltrd A B A B