Metamath Proof Explorer


Theorem spanss

Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spanss BABspanAspanB

Proof

Step Hyp Ref Expression
1 sstr2 ABBxAx
2 1 adantr ABxSBxAx
3 2 ss2rabdv ABxS|BxxS|Ax
4 intss xS|BxxS|AxxS|AxxS|Bx
5 3 4 syl ABxS|AxxS|Bx
6 5 adantl BABxS|AxxS|Bx
7 sstr ABBA
8 7 ancoms BABA
9 spanval AspanA=xS|Ax
10 8 9 syl BABspanA=xS|Ax
11 spanval BspanB=xS|Bx
12 11 adantr BABspanB=xS|Bx
13 6 10 12 3sstr4d BABspanAspanB