Metamath Proof Explorer


Theorem sra1r

Description: The multiplicative neutral element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sral1r.a φ A = subringAlg W S
sral1r.1 φ 1 ˙ = 1 W
sral1r.s φ S Base W
Assertion sra1r φ 1 ˙ = 1 A

Proof

Step Hyp Ref Expression
1 sral1r.a φ A = subringAlg W S
2 sral1r.1 φ 1 ˙ = 1 W
3 sral1r.s φ S Base W
4 eqidd φ Base W = Base W
5 1 3 srabase φ Base W = Base A
6 1 3 sramulr φ W = A
7 6 oveqdr φ x Base W y Base W x W y = x A y
8 4 5 7 rngidpropd φ 1 W = 1 A
9 2 8 eqtrd φ 1 ˙ = 1 A