Metamath Proof Explorer


Theorem sra1r

Description: The unity element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sral1r.a φA=subringAlgWS
sral1r.1 φ1˙=1W
sral1r.s φSBaseW
Assertion sra1r φ1˙=1A

Proof

Step Hyp Ref Expression
1 sral1r.a φA=subringAlgWS
2 sral1r.1 φ1˙=1W
3 sral1r.s φSBaseW
4 eqidd φBaseW=BaseW
5 1 3 srabase φBaseW=BaseA
6 1 3 sramulr φW=A
7 6 oveqdr φxBaseWyBaseWxWy=xAy
8 4 5 7 rngidpropd φ1W=1A
9 2 8 eqtrd φ1˙=1A