Metamath Proof Explorer


Theorem sraassa

Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypothesis sraassa.a A = subringAlg W S
Assertion sraassa W CRing S SubRing W A AssAlg

Proof

Step Hyp Ref Expression
1 sraassa.a A = subringAlg W S
2 1 a1i W CRing S SubRing W A = subringAlg W S
3 eqid Base W = Base W
4 3 subrgss S SubRing W S Base W
5 4 adantl W CRing S SubRing W S Base W
6 2 5 srabase W CRing S SubRing W Base W = Base A
7 2 5 srasca W CRing S SubRing W W 𝑠 S = Scalar A
8 eqid W 𝑠 S = W 𝑠 S
9 8 subrgbas S SubRing W S = Base W 𝑠 S
10 9 adantl W CRing S SubRing W S = Base W 𝑠 S
11 2 5 sravsca W CRing S SubRing W W = A
12 2 5 sramulr W CRing S SubRing W W = A
13 1 sralmod S SubRing W A LMod
14 13 adantl W CRing S SubRing W A LMod
15 crngring W CRing W Ring
16 15 adantr W CRing S SubRing W W Ring
17 eqidd W CRing S SubRing W Base W = Base W
18 2 5 sraaddg W CRing S SubRing W + W = + A
19 18 oveqdr W CRing S SubRing W x Base W y Base W x + W y = x + A y
20 12 oveqdr W CRing S SubRing W x Base W y Base W x W y = x A y
21 17 6 19 20 ringpropd W CRing S SubRing W W Ring A Ring
22 16 21 mpbid W CRing S SubRing W A Ring
23 8 subrgcrng W CRing S SubRing W W 𝑠 S CRing
24 16 adantr W CRing S SubRing W x S y Base W z Base W W Ring
25 5 adantr W CRing S SubRing W x S y Base W z Base W S Base W
26 simpr1 W CRing S SubRing W x S y Base W z Base W x S
27 25 26 sseldd W CRing S SubRing W x S y Base W z Base W x Base W
28 simpr2 W CRing S SubRing W x S y Base W z Base W y Base W
29 simpr3 W CRing S SubRing W x S y Base W z Base W z Base W
30 eqid W = W
31 3 30 ringass W Ring x Base W y Base W z Base W x W y W z = x W y W z
32 24 27 28 29 31 syl13anc W CRing S SubRing W x S y Base W z Base W x W y W z = x W y W z
33 eqid mulGrp W = mulGrp W
34 33 crngmgp W CRing mulGrp W CMnd
35 34 ad2antrr W CRing S SubRing W x S y Base W z Base W mulGrp W CMnd
36 33 3 mgpbas Base W = Base mulGrp W
37 33 30 mgpplusg W = + mulGrp W
38 36 37 cmn12 mulGrp W CMnd y Base W x Base W z Base W y W x W z = x W y W z
39 35 28 27 29 38 syl13anc W CRing S SubRing W x S y Base W z Base W y W x W z = x W y W z
40 6 7 10 11 12 14 22 23 32 39 isassad W CRing S SubRing W A AssAlg