Metamath Proof Explorer


Theorem ssc2

Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses ssc2.1 φHFnS×S
ssc2.2 φHcatJ
ssc2.3 φXS
ssc2.4 φYS
Assertion ssc2 φXHYXJY

Proof

Step Hyp Ref Expression
1 ssc2.1 φHFnS×S
2 ssc2.2 φHcatJ
3 ssc2.3 φXS
4 ssc2.4 φYS
5 eqidd φdomdomJ=domdomJ
6 2 5 sscfn2 φJFndomdomJ×domdomJ
7 sscrel Relcat
8 7 brrelex2i HcatJJV
9 dmexg JVdomJV
10 dmexg domJVdomdomJV
11 2 8 9 10 4syl φdomdomJV
12 1 6 11 isssc φHcatJSdomdomJxSySxHyxJy
13 2 12 mpbid φSdomdomJxSySxHyxJy
14 13 simprd φxSySxHyxJy
15 oveq1 x=XxHy=XHy
16 oveq1 x=XxJy=XJy
17 15 16 sseq12d x=XxHyxJyXHyXJy
18 oveq2 y=YXHy=XHY
19 oveq2 y=YXJy=XJY
20 18 19 sseq12d y=YXHyXJyXHYXJY
21 17 20 rspc2va XSYSxSySxHyxJyXHYXJY
22 3 4 14 21 syl21anc φXHYXJY