Metamath Proof Explorer


Theorem sscoid

Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018)

Ref Expression
Assertion sscoid AIBRelAAB

Proof

Step Hyp Ref Expression
1 relco RelIB
2 relss AIBRelIBRelA
3 1 2 mpi AIBRelA
4 elrel RelAxAyzx=yz
5 vex yV
6 vex zV
7 5 6 brco yIBzxyBxxIz
8 6 ideq xIzx=z
9 8 anbi1ci yBxxIzx=zyBx
10 9 exbii xyBxxIzxx=zyBx
11 breq2 x=zyBxyBz
12 11 equsexvw xx=zyBxyBz
13 7 10 12 3bitri yIBzyBz
14 13 a1i x=yzyIBzyBz
15 eleq1 x=yzxIByzIB
16 df-br yIBzyzIB
17 15 16 bitr4di x=yzxIByIBz
18 eleq1 x=yzxByzB
19 df-br yBzyzB
20 18 19 bitr4di x=yzxByBz
21 14 17 20 3bitr4d x=yzxIBxB
22 21 exlimivv yzx=yzxIBxB
23 4 22 syl RelAxAxIBxB
24 23 pm5.74da RelAxAxIBxAxB
25 24 albidv RelAxxAxIBxxAxB
26 dfss2 AIBxxAxIB
27 dfss2 ABxxAxB
28 25 26 27 3bitr4g RelAAIBAB
29 3 28 biadanii AIBRelAAB