Metamath Proof Explorer


Theorem dffun10

Description: Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/ . (Contributed by Scott Fenton, 30-Aug-2017)

Ref Expression
Assertion dffun10 FunFFIVVIF

Proof

Step Hyp Ref Expression
1 impexp xyFxzFy=zxyFxzFy=z
2 1 albii zxyFxzFy=zzxyFxzFy=z
3 19.21v zxyFxzFy=zxyFzxzFy=z
4 vex xV
5 vex yV
6 4 5 opelco xyVIFzxFzzVIy
7 df-br xFzxzF
8 brv zVy
9 brdif zVIyzVy¬zIy
10 8 9 mpbiran zVIy¬zIy
11 5 ideq zIyz=y
12 equcom z=yy=z
13 11 12 bitri zIyy=z
14 10 13 xchbinx zVIy¬y=z
15 7 14 anbi12i xFzzVIyxzF¬y=z
16 15 exbii zxFzzVIyzxzF¬y=z
17 exanali zxzF¬y=z¬zxzFy=z
18 6 16 17 3bitri xyVIF¬zxzFy=z
19 18 con2bii zxzFy=z¬xyVIF
20 opex xyV
21 eldif xyVVIFxyV¬xyVIF
22 20 21 mpbiran xyVVIF¬xyVIF
23 19 22 bitr4i zxzFy=zxyVVIF
24 23 imbi2i xyFzxzFy=zxyFxyVVIF
25 2 3 24 3bitri zxyFxzFy=zxyFxyVVIF
26 25 2albii xyzxyFxzFy=zxyxyFxyVVIF
27 ssrel RelFFVVIFxyxyFxyVVIF
28 26 27 bitr4id RelFxyzxyFxzFy=zFVVIF
29 28 pm5.32i RelFxyzxyFxzFy=zRelFFVVIF
30 dffun4 FunFRelFxyzxyFxzFy=z
31 sscoid FIVVIFRelFFVVIF
32 29 30 31 3bitr4i FunFFIVVIF