Metamath Proof Explorer


Theorem sscres

Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscres HFnS×SSVHT×TcatH

Proof

Step Hyp Ref Expression
1 inss1 STS
2 simpl xSTySTxST
3 2 elin2d xSTySTxT
4 simpr xSTySTyST
5 4 elin2d xSTySTyT
6 3 5 ovresd xSTySTxHT×Ty=xHy
7 eqimss xHT×Ty=xHyxHT×TyxHy
8 6 7 syl xSTySTxHT×TyxHy
9 8 rgen2 xSTySTxHT×TyxHy
10 1 9 pm3.2i STSxSTySTxHT×TyxHy
11 simpl HFnS×SSVHFnS×S
12 inss1 S×ST×TS×S
13 fnssres HFnS×SS×ST×TS×SHS×ST×TFnS×ST×T
14 11 12 13 sylancl HFnS×SSVHS×ST×TFnS×ST×T
15 resres HS×ST×T=HS×ST×T
16 fnresdm HFnS×SHS×S=H
17 16 adantr HFnS×SSVHS×S=H
18 17 reseq1d HFnS×SSVHS×ST×T=HT×T
19 15 18 eqtr3id HFnS×SSVHS×ST×T=HT×T
20 inxp S×ST×T=ST×ST
21 20 a1i HFnS×SSVS×ST×T=ST×ST
22 19 21 fneq12d HFnS×SSVHS×ST×TFnS×ST×THT×TFnST×ST
23 14 22 mpbid HFnS×SSVHT×TFnST×ST
24 simpr HFnS×SSVSV
25 23 11 24 isssc HFnS×SSVHT×TcatHSTSxSTySTxHT×TyxHy
26 10 25 mpbiri HFnS×SSVHT×TcatH