Metamath Proof Explorer


Theorem ssdomfi

Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 12-Nov-2024)

Ref Expression
Assertion ssdomfi B Fin A B A B

Proof

Step Hyp Ref Expression
1 f1oi I A : A 1-1 onto A
2 f1of1 I A : A 1-1 onto A I A : A 1-1 A
3 1 2 ax-mp I A : A 1-1 A
4 f1ss I A : A 1-1 A A B I A : A 1-1 B
5 3 4 mpan A B I A : A 1-1 B
6 f1domfi B Fin I A : A 1-1 B A B
7 5 6 sylan2 B Fin A B A B
8 7 ex B Fin A B A B