Metamath Proof Explorer


Theorem ssfg

Description: A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion ssfg FfBasXFXfilGenF

Proof

Step Hyp Ref Expression
1 fbelss FfBasXtFtX
2 1 ex FfBasXtFtX
3 ssid tt
4 sseq1 x=txttt
5 4 rspcev tFttxFxt
6 3 5 mpan2 tFxFxt
7 2 6 jca2 FfBasXtFtXxFxt
8 elfg FfBasXtXfilGenFtXxFxt
9 7 8 sylibrd FfBasXtFtXfilGenF
10 9 ssrdv FfBasXFXfilGenF