Metamath Proof Explorer


Theorem ssmcls

Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
Assertion ssmcls φ B K C B

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 eqid mVH T = mVH T
8 1 2 3 4 5 6 7 ssmclslem φ B ran mVH T K C B
9 8 unssad φ B K C B