Metamath Proof Explorer


Theorem sspims

Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspims.y Y=BaseSetW
sspims.d D=IndMetU
sspims.c C=IndMetW
sspims.h H=SubSpU
Assertion sspims UNrmCVecWHC=DY×Y

Proof

Step Hyp Ref Expression
1 sspims.y Y=BaseSetW
2 sspims.d D=IndMetU
3 sspims.c C=IndMetW
4 sspims.h H=SubSpU
5 1 2 3 4 sspimsval UNrmCVecWHxYyYxCy=xDy
6 1 3 imsdf WNrmCVecC:Y×Y
7 eqid BaseSetU=BaseSetU
8 7 2 imsdf UNrmCVecD:BaseSetU×BaseSetU
9 1 4 5 6 8 sspmlem UNrmCVecWHC=DY×Y