Description: The induced metric on a subspace is a restriction of the induced metric on the parent space. (Contributed by NM, 1-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sspims.y | |
|
sspims.d | |
||
sspims.c | |
||
sspims.h | |
||
Assertion | sspims | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspims.y | |
|
2 | sspims.d | |
|
3 | sspims.c | |
|
4 | sspims.h | |
|
5 | 1 2 3 4 | sspimsval | |
6 | 1 3 | imsdf | |
7 | eqid | |
|
8 | 7 2 | imsdf | |
9 | 1 4 5 6 8 | sspmlem | |