Metamath Proof Explorer


Theorem ssprsseq

Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020)

Ref Expression
Assertion ssprsseq AVBWABABCDAB=CD

Proof

Step Hyp Ref Expression
1 ssprss AVBWABCDA=CA=DB=CB=D
2 1 3adant3 AVBWABABCDA=CA=DB=CB=D
3 eqneqall A=BABAB=CD
4 eqtr3 A=CB=CA=B
5 3 4 syl11 ABA=CB=CAB=CD
6 5 3ad2ant3 AVBWABA=CB=CAB=CD
7 6 com12 A=CB=CAVBWABAB=CD
8 preq12 A=DB=CAB=DC
9 prcom DC=CD
10 8 9 eqtrdi A=DB=CAB=CD
11 10 a1d A=DB=CAVBWABAB=CD
12 preq12 A=CB=DAB=CD
13 12 a1d A=CB=DAVBWABAB=CD
14 eqtr3 A=DB=DA=B
15 3 14 syl11 ABA=DB=DAB=CD
16 15 3ad2ant3 AVBWABA=DB=DAB=CD
17 16 com12 A=DB=DAVBWABAB=CD
18 7 11 13 17 ccase A=CA=DB=CB=DAVBWABAB=CD
19 18 com12 AVBWABA=CA=DB=CB=DAB=CD
20 2 19 sylbid AVBWABABCDAB=CD
21 eqimss AB=CDABCD
22 20 21 impbid1 AVBWABABCDAB=CD