Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ssprsseq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssprss | |
|
2 | 1 | 3adant3 | |
3 | eqneqall | |
|
4 | eqtr3 | |
|
5 | 3 4 | syl11 | |
6 | 5 | 3ad2ant3 | |
7 | 6 | com12 | |
8 | preq12 | |
|
9 | prcom | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | a1d | |
12 | preq12 | |
|
13 | 12 | a1d | |
14 | eqtr3 | |
|
15 | 3 14 | syl11 | |
16 | 15 | 3ad2ant3 | |
17 | 16 | com12 | |
18 | 7 11 13 17 | ccase | |
19 | 18 | com12 | |
20 | 2 19 | sylbid | |
21 | eqimss | |
|
22 | 20 21 | impbid1 | |