Metamath Proof Explorer


Theorem stj

Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion stj S States A C B C A B S A B = S A + S B

Proof

Step Hyp Ref Expression
1 isst S States S : C 0 1 S = 1 x C y C x y S x y = S x + S y
2 1 simp3bi S States x C y C x y S x y = S x + S y
3 sseq1 x = A x y A y
4 fvoveq1 x = A S x y = S A y
5 fveq2 x = A S x = S A
6 5 oveq1d x = A S x + S y = S A + S y
7 4 6 eqeq12d x = A S x y = S x + S y S A y = S A + S y
8 3 7 imbi12d x = A x y S x y = S x + S y A y S A y = S A + S y
9 fveq2 y = B y = B
10 9 sseq2d y = B A y A B
11 oveq2 y = B A y = A B
12 11 fveq2d y = B S A y = S A B
13 fveq2 y = B S y = S B
14 13 oveq2d y = B S A + S y = S A + S B
15 12 14 eqeq12d y = B S A y = S A + S y S A B = S A + S B
16 10 15 imbi12d y = B A y S A y = S A + S y A B S A B = S A + S B
17 8 16 rspc2v A C B C x C y C x y S x y = S x + S y A B S A B = S A + S B
18 2 17 syl5com S States A C B C A B S A B = S A + S B
19 18 impd S States A C B C A B S A B = S A + S B