Metamath Proof Explorer


Theorem stm1i

Description: State of component of unit meet. (Contributed by NM, 11-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
Assertion stm1i SStatesSAB=1SA=1

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 inss1 ABA
4 1 2 chincli ABC
5 4 1 stlei SStatesABASABSA
6 3 5 mpi SStatesSABSA
7 breq1 SAB=1SABSA1SA
8 6 7 syl5ibcom SStatesSAB=11SA
9 1 stge1i SStates1SASA=1
10 8 9 sylibd SStatesSAB=1SA=1