Metamath Proof Explorer


Theorem stoig

Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis restuni.1 X = J
Assertion stoig J Top A X Base ndx A TopSet ndx J 𝑡 A TopSp

Proof

Step Hyp Ref Expression
1 restuni.1 X = J
2 1 toptopon J Top J TopOn X
3 resttopon J TopOn X A X J 𝑡 A TopOn A
4 2 3 sylanb J Top A X J 𝑡 A TopOn A
5 eqid Base ndx A TopSet ndx J 𝑡 A = Base ndx A TopSet ndx J 𝑡 A
6 5 eltpsg J 𝑡 A TopOn A Base ndx A TopSet ndx J 𝑡 A TopSp
7 4 6 syl J Top A X Base ndx A TopSet ndx J 𝑡 A TopSp