Metamath Proof Explorer


Theorem stoig

Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis restuni.1 X=J
Assertion stoig JTopAXBasendxATopSetndxJ𝑡ATopSp

Proof

Step Hyp Ref Expression
1 restuni.1 X=J
2 1 toptopon JTopJTopOnX
3 resttopon JTopOnXAXJ𝑡ATopOnA
4 2 3 sylanb JTopAXJ𝑡ATopOnA
5 eqid BasendxATopSetndxJ𝑡A=BasendxATopSetndxJ𝑡A
6 5 eltpsg J𝑡ATopOnABasendxATopSetndxJ𝑡ATopSp
7 4 6 syl JTopAXBasendxATopSetndxJ𝑡ATopSp