Metamath Proof Explorer


Theorem stri

Description: Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in Mayet p. 370. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses str.1 AC
str.2 BC
Assertion stri fStatesfA=1fB=1AB

Proof

Step Hyp Ref Expression
1 str.1 AC
2 str.2 BC
3 dfral2 fStatesfA=1fB=1¬fStates¬fA=1fB=1
4 1 2 strlem1 ¬ABuABnormu=1
5 eqid xCnormprojxu2=xCnormprojxu2
6 biid uABnormu=1uABnormu=1
7 5 6 1 2 strlem3 uABnormu=1xCnormprojxu2States
8 5 6 1 2 strlem6 uABnormu=1¬xCnormprojxu2A=1xCnormprojxu2B=1
9 fveq1 f=xCnormprojxu2fA=xCnormprojxu2A
10 9 eqeq1d f=xCnormprojxu2fA=1xCnormprojxu2A=1
11 fveq1 f=xCnormprojxu2fB=xCnormprojxu2B
12 11 eqeq1d f=xCnormprojxu2fB=1xCnormprojxu2B=1
13 10 12 imbi12d f=xCnormprojxu2fA=1fB=1xCnormprojxu2A=1xCnormprojxu2B=1
14 13 notbid f=xCnormprojxu2¬fA=1fB=1¬xCnormprojxu2A=1xCnormprojxu2B=1
15 14 rspcev xCnormprojxu2States¬xCnormprojxu2A=1xCnormprojxu2B=1fStates¬fA=1fB=1
16 7 8 15 syl2anc uABnormu=1fStates¬fA=1fB=1
17 16 rexlimiva uABnormu=1fStates¬fA=1fB=1
18 4 17 syl ¬ABfStates¬fA=1fB=1
19 18 con1i ¬fStates¬fA=1fB=1AB
20 3 19 sylbi fStatesfA=1fB=1AB