Description: Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in Mayet p. 370. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | str.1 | |
|
str.2 | |
||
Assertion | stri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | str.1 | |
|
2 | str.2 | |
|
3 | dfral2 | |
|
4 | 1 2 | strlem1 | |
5 | eqid | |
|
6 | biid | |
|
7 | 5 6 1 2 | strlem3 | |
8 | 5 6 1 2 | strlem6 | |
9 | fveq1 | |
|
10 | 9 | eqeq1d | |
11 | fveq1 | |
|
12 | 11 | eqeq1d | |
13 | 10 12 | imbi12d | |
14 | 13 | notbid | |
15 | 14 | rspcev | |
16 | 7 8 15 | syl2anc | |
17 | 16 | rexlimiva | |
18 | 4 17 | syl | |
19 | 18 | con1i | |
20 | 3 19 | sylbi | |