Metamath Proof Explorer


Theorem stri

Description: Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in Mayet p. 370. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses str.1 A C
str.2 B C
Assertion stri f States f A = 1 f B = 1 A B

Proof

Step Hyp Ref Expression
1 str.1 A C
2 str.2 B C
3 dfral2 f States f A = 1 f B = 1 ¬ f States ¬ f A = 1 f B = 1
4 1 2 strlem1 ¬ A B u A B norm u = 1
5 eqid x C norm proj x u 2 = x C norm proj x u 2
6 biid u A B norm u = 1 u A B norm u = 1
7 5 6 1 2 strlem3 u A B norm u = 1 x C norm proj x u 2 States
8 5 6 1 2 strlem6 u A B norm u = 1 ¬ x C norm proj x u 2 A = 1 x C norm proj x u 2 B = 1
9 fveq1 f = x C norm proj x u 2 f A = x C norm proj x u 2 A
10 9 eqeq1d f = x C norm proj x u 2 f A = 1 x C norm proj x u 2 A = 1
11 fveq1 f = x C norm proj x u 2 f B = x C norm proj x u 2 B
12 11 eqeq1d f = x C norm proj x u 2 f B = 1 x C norm proj x u 2 B = 1
13 10 12 imbi12d f = x C norm proj x u 2 f A = 1 f B = 1 x C norm proj x u 2 A = 1 x C norm proj x u 2 B = 1
14 13 notbid f = x C norm proj x u 2 ¬ f A = 1 f B = 1 ¬ x C norm proj x u 2 A = 1 x C norm proj x u 2 B = 1
15 14 rspcev x C norm proj x u 2 States ¬ x C norm proj x u 2 A = 1 x C norm proj x u 2 B = 1 f States ¬ f A = 1 f B = 1
16 7 8 15 syl2anc u A B norm u = 1 f States ¬ f A = 1 f B = 1
17 16 rexlimiva u A B norm u = 1 f States ¬ f A = 1 f B = 1
18 4 17 syl ¬ A B f States ¬ f A = 1 f B = 1
19 18 con1i ¬ f States ¬ f A = 1 f B = 1 A B
20 3 19 sylbi f States f A = 1 f B = 1 A B