Metamath Proof Explorer


Theorem strisomgrop

Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses strisomgrop.g G=VE
strisomgrop.h H=BasendxVefndxE
Assertion strisomgrop GUHGraphVXEYGIsomGrH

Proof

Step Hyp Ref Expression
1 strisomgrop.g G=VE
2 strisomgrop.h H=BasendxVefndxE
3 simp1 GUHGraphVXEYGUHGraph
4 prex BasendxVefndxEV
5 2 4 eqeltri HV
6 5 a1i GUHGraphVXEYHV
7 opvtxfv VXEYVtxVE=V
8 7 3adant1 GUHGraphVXEYVtxVE=V
9 1 fveq2i VtxG=VtxVE
10 9 a1i GUHGraphVXEYVtxG=VtxVE
11 2 struct2grvtx VXEYVtxH=V
12 11 3adant1 GUHGraphVXEYVtxH=V
13 8 10 12 3eqtr4d GUHGraphVXEYVtxG=VtxH
14 opiedgfv VXEYiEdgVE=E
15 14 3adant1 GUHGraphVXEYiEdgVE=E
16 1 fveq2i iEdgG=iEdgVE
17 16 a1i GUHGraphVXEYiEdgG=iEdgVE
18 2 struct2griedg VXEYiEdgH=E
19 18 3adant1 GUHGraphVXEYiEdgH=E
20 15 17 19 3eqtr4d GUHGraphVXEYiEdgG=iEdgH
21 isomgreqve GUHGraphHVVtxG=VtxHiEdgG=iEdgHGIsomGrH
22 3 6 13 20 21 syl22anc GUHGraphVXEYGIsomGrH