Metamath Proof Explorer


Theorem subaddeqd

Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subaddeqd.a φA
subaddeqd.b φB
subaddeqd.c φC
subaddeqd.d φD
subaddeqd.1 φA+B=C+D
Assertion subaddeqd φAD=CB

Proof

Step Hyp Ref Expression
1 subaddeqd.a φA
2 subaddeqd.b φB
3 subaddeqd.c φC
4 subaddeqd.d φD
5 subaddeqd.1 φA+B=C+D
6 5 oveq1d φA+B-D+B=C+D-D+B
7 3 4 addcomd φC+D=D+C
8 7 oveq1d φC+D-D+B=D+C-D+B
9 6 8 eqtrd φA+B-D+B=D+C-D+B
10 1 4 2 pnpcan2d φA+B-D+B=AD
11 4 3 2 pnpcand φD+C-D+B=CB
12 9 10 11 3eqtr3d φAD=CB