Metamath Proof Explorer


Theorem subccat

Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subccat.1 D=CcatJ
subccat.j φJSubcatC
Assertion subccat φDCat

Proof

Step Hyp Ref Expression
1 subccat.1 D=CcatJ
2 subccat.j φJSubcatC
3 eqidd φdomdomJ=domdomJ
4 2 3 subcfn φJFndomdomJ×domdomJ
5 eqid IdC=IdC
6 1 2 4 5 subccatid φDCatIdD=xdomdomJIdCx
7 6 simpld φDCat