Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 , for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubc3.h | |
|
issubc3.i | |
||
issubc3.1 | |
||
issubc3.c | |
||
issubc3.a | |
||
Assertion | issubc3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubc3.h | |
|
2 | issubc3.i | |
|
3 | issubc3.1 | |
|
4 | issubc3.c | |
|
5 | issubc3.a | |
|
6 | simpr | |
|
7 | 6 1 | subcssc | |
8 | 6 | adantr | |
9 | 5 | ad2antrr | |
10 | simpr | |
|
11 | 8 9 10 2 | subcidcl | |
12 | 11 | ralrimiva | |
13 | 3 6 | subccat | |
14 | 7 12 13 | 3jca | |
15 | simpr1 | |
|
16 | simpr2 | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | simplrr | |
|
21 | simprl1 | |
|
22 | eqid | |
|
23 | 4 | ad2antrr | |
24 | 5 | ad2antrr | |
25 | 1 22 | homffn | |
26 | 25 | a1i | |
27 | simplrl | |
|
28 | 24 26 27 | ssc1 | |
29 | 3 22 23 24 28 | rescbas | |
30 | 21 29 | eleqtrd | |
31 | simprl2 | |
|
32 | 31 29 | eleqtrd | |
33 | simprl3 | |
|
34 | 33 29 | eleqtrd | |
35 | simprrl | |
|
36 | 3 22 23 24 28 | reschom | |
37 | 36 | oveqd | |
38 | 35 37 | eleqtrd | |
39 | simprrr | |
|
40 | 36 | oveqd | |
41 | 39 40 | eleqtrd | |
42 | 17 18 19 20 30 32 34 38 41 | catcocl | |
43 | eqid | |
|
44 | 3 22 23 24 28 43 | rescco | |
45 | 44 | oveqd | |
46 | 45 | oveqd | |
47 | 36 | oveqd | |
48 | 42 46 47 | 3eltr4d | |
49 | 48 | anassrs | |
50 | 49 | ralrimivva | |
51 | 50 | ralrimivvva | |
52 | 51 | 3adantr2 | |
53 | r19.26 | |
|
54 | 16 52 53 | sylanbrc | |
55 | 4 | adantr | |
56 | 5 | adantr | |
57 | 1 2 43 55 56 | issubc2 | |
58 | 15 54 57 | mpbir2and | |
59 | 14 58 | impbida | |