Metamath Proof Explorer


Theorem issubc3

Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 , for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses issubc3.h H=Hom𝑓C
issubc3.i 1˙=IdC
issubc3.1 D=CcatJ
issubc3.c φCCat
issubc3.a φJFnS×S
Assertion issubc3 φJSubcatCJcatHxS1˙xxJxDCat

Proof

Step Hyp Ref Expression
1 issubc3.h H=Hom𝑓C
2 issubc3.i 1˙=IdC
3 issubc3.1 D=CcatJ
4 issubc3.c φCCat
5 issubc3.a φJFnS×S
6 simpr φJSubcatCJSubcatC
7 6 1 subcssc φJSubcatCJcatH
8 6 adantr φJSubcatCxSJSubcatC
9 5 ad2antrr φJSubcatCxSJFnS×S
10 simpr φJSubcatCxSxS
11 8 9 10 2 subcidcl φJSubcatCxS1˙xxJx
12 11 ralrimiva φJSubcatCxS1˙xxJx
13 3 6 subccat φJSubcatCDCat
14 7 12 13 3jca φJSubcatCJcatHxS1˙xxJxDCat
15 simpr1 φJcatHxS1˙xxJxDCatJcatH
16 simpr2 φJcatHxS1˙xxJxDCatxS1˙xxJx
17 eqid BaseD=BaseD
18 eqid HomD=HomD
19 eqid compD=compD
20 simplrr φJcatHDCatxSySzSfxJygyJzDCat
21 simprl1 φJcatHDCatxSySzSfxJygyJzxS
22 eqid BaseC=BaseC
23 4 ad2antrr φJcatHDCatxSySzSfxJygyJzCCat
24 5 ad2antrr φJcatHDCatxSySzSfxJygyJzJFnS×S
25 1 22 homffn HFnBaseC×BaseC
26 25 a1i φJcatHDCatxSySzSfxJygyJzHFnBaseC×BaseC
27 simplrl φJcatHDCatxSySzSfxJygyJzJcatH
28 24 26 27 ssc1 φJcatHDCatxSySzSfxJygyJzSBaseC
29 3 22 23 24 28 rescbas φJcatHDCatxSySzSfxJygyJzS=BaseD
30 21 29 eleqtrd φJcatHDCatxSySzSfxJygyJzxBaseD
31 simprl2 φJcatHDCatxSySzSfxJygyJzyS
32 31 29 eleqtrd φJcatHDCatxSySzSfxJygyJzyBaseD
33 simprl3 φJcatHDCatxSySzSfxJygyJzzS
34 33 29 eleqtrd φJcatHDCatxSySzSfxJygyJzzBaseD
35 simprrl φJcatHDCatxSySzSfxJygyJzfxJy
36 3 22 23 24 28 reschom φJcatHDCatxSySzSfxJygyJzJ=HomD
37 36 oveqd φJcatHDCatxSySzSfxJygyJzxJy=xHomDy
38 35 37 eleqtrd φJcatHDCatxSySzSfxJygyJzfxHomDy
39 simprrr φJcatHDCatxSySzSfxJygyJzgyJz
40 36 oveqd φJcatHDCatxSySzSfxJygyJzyJz=yHomDz
41 39 40 eleqtrd φJcatHDCatxSySzSfxJygyJzgyHomDz
42 17 18 19 20 30 32 34 38 41 catcocl φJcatHDCatxSySzSfxJygyJzgxycompDzfxHomDz
43 eqid compC=compC
44 3 22 23 24 28 43 rescco φJcatHDCatxSySzSfxJygyJzcompC=compD
45 44 oveqd φJcatHDCatxSySzSfxJygyJzxycompCz=xycompDz
46 45 oveqd φJcatHDCatxSySzSfxJygyJzgxycompCzf=gxycompDzf
47 36 oveqd φJcatHDCatxSySzSfxJygyJzxJz=xHomDz
48 42 46 47 3eltr4d φJcatHDCatxSySzSfxJygyJzgxycompCzfxJz
49 48 anassrs φJcatHDCatxSySzSfxJygyJzgxycompCzfxJz
50 49 ralrimivva φJcatHDCatxSySzSfxJygyJzgxycompCzfxJz
51 50 ralrimivvva φJcatHDCatxSySzSfxJygyJzgxycompCzfxJz
52 51 3adantr2 φJcatHxS1˙xxJxDCatxSySzSfxJygyJzgxycompCzfxJz
53 r19.26 xS1˙xxJxySzSfxJygyJzgxycompCzfxJzxS1˙xxJxxSySzSfxJygyJzgxycompCzfxJz
54 16 52 53 sylanbrc φJcatHxS1˙xxJxDCatxS1˙xxJxySzSfxJygyJzgxycompCzfxJz
55 4 adantr φJcatHxS1˙xxJxDCatCCat
56 5 adantr φJcatHxS1˙xxJxDCatJFnS×S
57 1 2 43 55 56 issubc2 φJcatHxS1˙xxJxDCatJSubcatCJcatHxS1˙xxJxySzSfxJygyJzgxycompCzfxJz
58 15 54 57 mpbir2and φJcatHxS1˙xxJxDCatJSubcatC
59 14 58 impbida φJSubcatCJcatHxS1˙xxJxDCat