Metamath Proof Explorer


Theorem subgcl

Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subgcl.p +˙=+G
Assertion subgcl SSubGrpGXSYSX+˙YS

Proof

Step Hyp Ref Expression
1 subgcl.p +˙=+G
2 eqid G𝑠S=G𝑠S
3 2 subggrp SSubGrpGG𝑠SGrp
4 3 3ad2ant1 SSubGrpGXSYSG𝑠SGrp
5 simp2 SSubGrpGXSYSXS
6 2 subgbas SSubGrpGS=BaseG𝑠S
7 6 3ad2ant1 SSubGrpGXSYSS=BaseG𝑠S
8 5 7 eleqtrd SSubGrpGXSYSXBaseG𝑠S
9 simp3 SSubGrpGXSYSYS
10 9 7 eleqtrd SSubGrpGXSYSYBaseG𝑠S
11 eqid BaseG𝑠S=BaseG𝑠S
12 eqid +G𝑠S=+G𝑠S
13 11 12 grpcl G𝑠SGrpXBaseG𝑠SYBaseG𝑠SX+G𝑠SYBaseG𝑠S
14 4 8 10 13 syl3anc SSubGrpGXSYSX+G𝑠SYBaseG𝑠S
15 2 1 ressplusg SSubGrpG+˙=+G𝑠S
16 15 3ad2ant1 SSubGrpGXSYS+˙=+G𝑠S
17 16 oveqd SSubGrpGXSYSX+˙Y=X+G𝑠SY
18 14 17 7 3eltr4d SSubGrpGXSYSX+˙YS