Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgcl.p | |
|
Assertion | subgcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgcl.p | |
|
2 | eqid | |
|
3 | 2 | subggrp | |
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | 2 | subgbas | |
7 | 6 | 3ad2ant1 | |
8 | 5 7 | eleqtrd | |
9 | simp3 | |
|
10 | 9 7 | eleqtrd | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | grpcl | |
14 | 4 8 10 13 | syl3anc | |
15 | 2 1 | ressplusg | |
16 | 15 | 3ad2ant1 | |
17 | 16 | oveqd | |
18 | 14 17 7 | 3eltr4d | |