Metamath Proof Explorer


Theorem subm0cl

Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis subm0cl.z 0˙=0M
Assertion subm0cl SSubMndM0˙S

Proof

Step Hyp Ref Expression
1 subm0cl.z 0˙=0M
2 submrcl SSubMndMMMnd
3 eqid BaseM=BaseM
4 eqid M𝑠S=M𝑠S
5 3 1 4 issubm2 MMndSSubMndMSBaseM0˙SM𝑠SMnd
6 2 5 syl SSubMndMSSubMndMSBaseM0˙SM𝑠SMnd
7 6 ibi SSubMndMSBaseM0˙SM𝑠SMnd
8 7 simp2d SSubMndM0˙S