Metamath Proof Explorer


Theorem subrg1asclcl

Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p P=Poly1R
subrg1ascl.a A=algScP
subrg1ascl.h H=R𝑠T
subrg1ascl.u U=Poly1H
subrg1ascl.r φTSubRingR
subrg1asclcl.b B=BaseU
subrg1asclcl.k K=BaseR
subrg1asclcl.x φXK
Assertion subrg1asclcl φAXBXT

Proof

Step Hyp Ref Expression
1 subrg1ascl.p P=Poly1R
2 subrg1ascl.a A=algScP
3 subrg1ascl.h H=R𝑠T
4 subrg1ascl.u U=Poly1H
5 subrg1ascl.r φTSubRingR
6 subrg1asclcl.b B=BaseU
7 subrg1asclcl.k K=BaseR
8 subrg1asclcl.x φXK
9 eqid 1𝑜mPolyR=1𝑜mPolyR
10 1 2 ply1ascl A=algSc1𝑜mPolyR
11 eqid 1𝑜mPolyH=1𝑜mPolyH
12 1on 1𝑜On
13 12 a1i φ1𝑜On
14 eqid PwSer1H=PwSer1H
15 4 14 6 ply1bas B=Base1𝑜mPolyH
16 9 10 3 11 13 5 15 7 8 subrgasclcl φAXBXT