Metamath Proof Explorer


Theorem subrgvr1

Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses subrgvr1.x X=var1R
subrgvr1.r φTSubRingR
subrgvr1.h H=R𝑠T
Assertion subrgvr1 φX=var1H

Proof

Step Hyp Ref Expression
1 subrgvr1.x X=var1R
2 subrgvr1.r φTSubRingR
3 subrgvr1.h H=R𝑠T
4 eqid 1𝑜mVarR=1𝑜mVarR
5 1on 1𝑜On
6 5 a1i φ1𝑜On
7 4 6 2 3 subrgmvr φ1𝑜mVarR=1𝑜mVarH
8 7 fveq1d φ1𝑜mVarR=1𝑜mVarH
9 1 vr1val X=1𝑜mVarR
10 eqid var1H=var1H
11 10 vr1val var1H=1𝑜mVarH
12 8 9 11 3eqtr4g φX=var1H