Metamath Proof Explorer


Theorem subsub

Description: Law for double subtraction. (Contributed by NM, 13-May-2004)

Ref Expression
Assertion subsub ABCABC=A-B+C

Proof

Step Hyp Ref Expression
1 subsub2 ABCABC=A+C-B
2 addsubass ACBA+C-B=A+C-B
3 addsub ACBA+C-B=A-B+C
4 2 3 eqtr3d ACBA+C-B=A-B+C
5 4 3com23 ABCA+C-B=A-B+C
6 1 5 eqtrd ABCABC=A-B+C