Metamath Proof Explorer


Theorem subuhgr

Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)

Ref Expression
Assertion subuhgr G UHGraph S SubGraph G S UHGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 subgruhgrfun G UHGraph S SubGraph G Fun iEdg S
8 7 ancoms S SubGraph G G UHGraph Fun iEdg S
9 8 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph Fun iEdg S
10 9 funfnd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph iEdg S Fn dom iEdg S
11 simplrr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph x dom iEdg S G UHGraph
12 simplrl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph x dom iEdg S S SubGraph G
13 simpr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph x dom iEdg S x dom iEdg S
14 1 3 11 12 13 subgruhgredgd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph x dom iEdg S iEdg S x 𝒫 Vtx S
15 14 ralrimiva Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph x dom iEdg S iEdg S x 𝒫 Vtx S
16 fnfvrnss iEdg S Fn dom iEdg S x dom iEdg S iEdg S x 𝒫 Vtx S ran iEdg S 𝒫 Vtx S
17 10 15 16 syl2anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph ran iEdg S 𝒫 Vtx S
18 df-f iEdg S : dom iEdg S 𝒫 Vtx S iEdg S Fn dom iEdg S ran iEdg S 𝒫 Vtx S
19 10 17 18 sylanbrc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
20 subgrv S SubGraph G S V G V
21 1 3 isuhgr S V S UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
22 21 adantr S V G V S UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
23 20 22 syl S SubGraph G S UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
24 23 adantr S SubGraph G G UHGraph S UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
25 24 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph S UHGraph iEdg S : dom iEdg S 𝒫 Vtx S
26 19 25 mpbird Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph S UHGraph
27 26 ex Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UHGraph S UHGraph
28 6 27 syl S SubGraph G S SubGraph G G UHGraph S UHGraph
29 28 anabsi8 G UHGraph S SubGraph G S UHGraph