Metamath Proof Explorer


Theorem sucxpdom

Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of TakeutiZaring p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sucxpdom 1 𝑜 A suc A A × A

Proof

Step Hyp Ref Expression
1 df-suc suc A = A A
2 relsdom Rel
3 2 brrelex2i 1 𝑜 A A V
4 1on 1 𝑜 On
5 xpsneng A V 1 𝑜 On A × 1 𝑜 A
6 3 4 5 sylancl 1 𝑜 A A × 1 𝑜 A
7 6 ensymd 1 𝑜 A A A × 1 𝑜
8 endom A A × 1 𝑜 A A × 1 𝑜
9 7 8 syl 1 𝑜 A A A × 1 𝑜
10 ensn1g A V A 1 𝑜
11 3 10 syl 1 𝑜 A A 1 𝑜
12 ensdomtr A 1 𝑜 1 𝑜 A A A
13 11 12 mpancom 1 𝑜 A A A
14 0ex V
15 xpsneng A V V A × A
16 3 14 15 sylancl 1 𝑜 A A × A
17 16 ensymd 1 𝑜 A A A ×
18 sdomentr A A A A × A A ×
19 13 17 18 syl2anc 1 𝑜 A A A ×
20 sdomdom A A × A A ×
21 19 20 syl 1 𝑜 A A A ×
22 1n0 1 𝑜
23 xpsndisj 1 𝑜 A × 1 𝑜 A × =
24 22 23 mp1i 1 𝑜 A A × 1 𝑜 A × =
25 undom A A × 1 𝑜 A A × A × 1 𝑜 A × = A A A × 1 𝑜 A ×
26 9 21 24 25 syl21anc 1 𝑜 A A A A × 1 𝑜 A ×
27 sdomentr 1 𝑜 A A A × 1 𝑜 1 𝑜 A × 1 𝑜
28 7 27 mpdan 1 𝑜 A 1 𝑜 A × 1 𝑜
29 sdomentr 1 𝑜 A A A × 1 𝑜 A ×
30 17 29 mpdan 1 𝑜 A 1 𝑜 A ×
31 unxpdom 1 𝑜 A × 1 𝑜 1 𝑜 A × A × 1 𝑜 A × A × 1 𝑜 × A ×
32 28 30 31 syl2anc 1 𝑜 A A × 1 𝑜 A × A × 1 𝑜 × A ×
33 domtr A A A × 1 𝑜 A × A × 1 𝑜 A × A × 1 𝑜 × A × A A A × 1 𝑜 × A ×
34 26 32 33 syl2anc 1 𝑜 A A A A × 1 𝑜 × A ×
35 xpen A × 1 𝑜 A A × A A × 1 𝑜 × A × A × A
36 6 16 35 syl2anc 1 𝑜 A A × 1 𝑜 × A × A × A
37 domentr A A A × 1 𝑜 × A × A × 1 𝑜 × A × A × A A A A × A
38 34 36 37 syl2anc 1 𝑜 A A A A × A
39 1 38 eqbrtrid 1 𝑜 A suc A A × A