Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of TakeutiZaring p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004) (Proof shortened by Mario Carneiro, 27-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sucxpdom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc | |
|
2 | relsdom | |
|
3 | 2 | brrelex2i | |
4 | 1on | |
|
5 | xpsneng | |
|
6 | 3 4 5 | sylancl | |
7 | 6 | ensymd | |
8 | endom | |
|
9 | 7 8 | syl | |
10 | ensn1g | |
|
11 | 3 10 | syl | |
12 | ensdomtr | |
|
13 | 11 12 | mpancom | |
14 | 0ex | |
|
15 | xpsneng | |
|
16 | 3 14 15 | sylancl | |
17 | 16 | ensymd | |
18 | sdomentr | |
|
19 | 13 17 18 | syl2anc | |
20 | sdomdom | |
|
21 | 19 20 | syl | |
22 | 1n0 | |
|
23 | xpsndisj | |
|
24 | 22 23 | mp1i | |
25 | undom | |
|
26 | 9 21 24 25 | syl21anc | |
27 | sdomentr | |
|
28 | 7 27 | mpdan | |
29 | sdomentr | |
|
30 | 17 29 | mpdan | |
31 | unxpdom | |
|
32 | 28 30 31 | syl2anc | |
33 | domtr | |
|
34 | 26 32 33 | syl2anc | |
35 | xpen | |
|
36 | 6 16 35 | syl2anc | |
37 | domentr | |
|
38 | 34 36 37 | syl2anc | |
39 | 1 38 | eqbrtrid | |