Metamath Proof Explorer


Theorem sucxpdom

Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of TakeutiZaring p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion sucxpdom 1𝑜AsucAA×A

Proof

Step Hyp Ref Expression
1 df-suc sucA=AA
2 relsdom Rel
3 2 brrelex2i 1𝑜AAV
4 1on 1𝑜On
5 xpsneng AV1𝑜OnA×1𝑜A
6 3 4 5 sylancl 1𝑜AA×1𝑜A
7 6 ensymd 1𝑜AAA×1𝑜
8 endom AA×1𝑜AA×1𝑜
9 7 8 syl 1𝑜AAA×1𝑜
10 ensn1g AVA1𝑜
11 3 10 syl 1𝑜AA1𝑜
12 ensdomtr A1𝑜1𝑜AAA
13 11 12 mpancom 1𝑜AAA
14 0ex V
15 xpsneng AVVA×A
16 3 14 15 sylancl 1𝑜AA×A
17 16 ensymd 1𝑜AAA×
18 sdomentr AAAA×AA×
19 13 17 18 syl2anc 1𝑜AAA×
20 sdomdom AA×AA×
21 19 20 syl 1𝑜AAA×
22 1n0 1𝑜
23 xpsndisj 1𝑜A×1𝑜A×=
24 22 23 mp1i 1𝑜AA×1𝑜A×=
25 undom AA×1𝑜AA×A×1𝑜A×=AAA×1𝑜A×
26 9 21 24 25 syl21anc 1𝑜AAAA×1𝑜A×
27 sdomentr 1𝑜AAA×1𝑜1𝑜A×1𝑜
28 7 27 mpdan 1𝑜A1𝑜A×1𝑜
29 sdomentr 1𝑜AAA×1𝑜A×
30 17 29 mpdan 1𝑜A1𝑜A×
31 unxpdom 1𝑜A×1𝑜1𝑜A×A×1𝑜A×A×1𝑜×A×
32 28 30 31 syl2anc 1𝑜AA×1𝑜A×A×1𝑜×A×
33 domtr AAA×1𝑜A×A×1𝑜A×A×1𝑜×A×AAA×1𝑜×A×
34 26 32 33 syl2anc 1𝑜AAAA×1𝑜×A×
35 xpen A×1𝑜AA×AA×1𝑜×A×A×A
36 6 16 35 syl2anc 1𝑜AA×1𝑜×A×A×A
37 domentr AAA×1𝑜×A×A×1𝑜×A×A×AAAA×A
38 34 36 37 syl2anc 1𝑜AAAA×A
39 1 38 eqbrtrid 1𝑜AsucAA×A