Metamath Proof Explorer


Theorem sumdmdi

Description: The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of Holland p. 1519. (Contributed by NM, 14-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 A C
sumdmdi.2 B C
Assertion sumdmdi A + B = A B A 𝑀 * B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 A C
2 sumdmdi.2 B C
3 1 2 sumdmdii A + B = A B A 𝑀 * B
4 dmdbr4 A C B C A 𝑀 * B x C x B A B x B A B
5 1 2 4 mp2an A 𝑀 * B x C x B A B x B A B
6 atelch x HAtoms x C
7 6 imim1i x C x B A B x B A B x HAtoms x B A B x B A B
8 7 ralimi2 x C x B A B x B A B x HAtoms x B A B x B A B
9 5 8 sylbi A 𝑀 * B x HAtoms x B A B x B A B
10 1 2 sumdmdlem2 x HAtoms x B A B x B A B A + B = A B
11 9 10 syl A 𝑀 * B A + B = A B
12 3 11 impbii A + B = A B A 𝑀 * B