Metamath Proof Explorer


Theorem sumsqeq0

Description: The sum of two squres of reals is zero if and only if both reals are zero. (Contributed by NM, 29-Apr-2005) (Revised by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion sumsqeq0 ABA=0B=0A2+B2=0

Proof

Step Hyp Ref Expression
1 resqcl AA2
2 sqge0 A0A2
3 1 2 jca AA20A2
4 resqcl BB2
5 sqge0 B0B2
6 4 5 jca BB20B2
7 add20 A20A2B20B2A2+B2=0A2=0B2=0
8 3 6 7 syl2an ABA2+B2=0A2=0B2=0
9 recn AA
10 sqeq0 AA2=0A=0
11 9 10 syl AA2=0A=0
12 recn BB
13 sqeq0 BB2=0B=0
14 12 13 syl BB2=0B=0
15 11 14 bi2anan9 ABA2=0B2=0A=0B=0
16 8 15 bitr2d ABA=0B=0A2+B2=0